EXTRA PROBLEMS FOR HOMEWORK 11

PEYAM RYAN TABRIZIAN

Problems

There are a total of 3 extra problems to do.

Problem 5.3.67. Let $g(x)=\int_{0}^{x} f(t) d t$, where f is the function whose graph is shown.
(a) At what values of x do the local maximum and minimum values of g occur?
(b) Where does g attain its absolute maximum value?
(c) On what intervals is g concave downward?
(d) Sketch the graph of g
1A/Math 1A - Fall 2013/Homeworks/FTC.png

Note: My apologies for the badly drawn picture. I'm sure you can find a more accurate picture somewhere in your textbook (somewhere close to problem 67)

[^0]Problem 5.3.70. Calculate:

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sqrt{\frac{1}{n}}+\sqrt{\frac{2}{n}}+\cdots+\sqrt{\frac{n}{n}}\right)
$$

Problem 5.5.86: If f is continuous and $\int_{0}^{9} f(x) d x=4$, find $\int_{0}^{3} x f\left(x^{2}\right) d x$

Solutions

Solution to 5.3.67.

(a) $g^{\prime}(x)=f(x)=0 \Rightarrow x=1,3,5,7,9$, but 9 is an endpoints, so ignore it. Hence, by the second derivative test:

- $g^{\prime \prime}(1)=f^{\prime}(1)<0$, so g has a local max at 1
- $g^{\prime \prime}(3)=f^{\prime}(3)>0$, so g has a local min at 3
- $g^{\prime \prime}(5)=f^{\prime}(5)<0$, so g has a local max at 5
- $g^{\prime \prime}(7)=f^{\prime}(7)>0$, so g has a local min at 7

In summary, g attains a local minimum at 3 and 7 , and a local maximum at 1 and 5 .
(b) You do this by guessing. The candidates are $0,1,3,5,7,9$ (critical points and endpoints). Notice $g(0)=0, g(3)<0$ but $g(5)>0$, so you can eliminate 0 and 3 . Also $g(5)>g(1)$, so you can eliminate 1 . Also $g(7)<0$, so you can eliminate 7. This leaves us with 5 and 9 , but notice that $g(5)=g(9)$ (the areas between 5 and 9 cancel out), so the answer is $x=5$ and $x=9$ (the book only writes $x=9$, but I disagree)
(c) $g^{\prime \prime}(x)=f^{\prime}(x)$, so to see where g is concave down, we have to check where $f^{\prime}(x)<0$, i.e. where f is decreasing. The answer is $\left(\frac{1}{2}, 2\right) \cup(4,6) \cup(8,9)$.
(d) 1A/Math 1A - Fall 2013/Homeworks/FTCSol.png

Solution to 5.3 .70 . First rewrite the limit as:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \sqrt{\frac{i}{n}}
$$

And you should recognize that $\Delta x=\frac{1}{n}, f(x)=\sqrt{x}, x_{i}=\frac{i}{n}$. In particular $a=x_{0}=0$ and $b=x_{n}=\frac{n}{n}=1$, so in fact this limit equals to:

$$
\int_{0}^{1} \sqrt{x} d x=\left[\frac{2}{3} x^{\frac{3}{2}}\right]_{0}^{1}=\frac{2}{3}-0=\frac{2}{3}
$$

Solution to 5.5 .86 . Using the substitution $u=x^{2}$, we get $d u=2 x d x$, so $x d x=$ $\frac{1}{2} d u$. Moreover, the endpoints become $u(0)=0$ and $u(3)=9$, so:

$$
\int_{0}^{3} x f\left(x^{2}\right) d x=\int_{0}^{9} f(u) \frac{1}{2} d u=\frac{1}{2} \int_{0}^{9} f(x) d x=\frac{4}{2}=2
$$

[^0]: Date: Monday, December 2nd, 2013.

